
https://yasirbhutta.github.io/ 2025-04-17

Page 1 of 6

Topics Covered
Topics Covered
🔷 What is Inheritance?

✅ Key Points:
Single Inheritance
🔹 1. Creating a Parent Class

🔍 Explanation:
🔹 2. Creating a Child Class (Inheritance)

🔍 Explanation:
🔹 3. Adding New Methods to the Child Class
🔹 4. Overriding Methods
🔹 5. Using super() to Call the Parent Method
Multilevel Inheritance in Python

Multilevel Inheritance Example: Person, Student, and GraduateStudent in Python
Example: E-Commerce Product Catalog

Scenario
Base Class
Subclasses with Specialized Logic
Usage

🧠 Summary
Common Mistakes to Avoid

🔷 What is Inheritance?
Inheritance is a way to create a new class from an existing class.
It helps us reuse code, extend functionality, and follow the DRY (Don't Repeat Yourself) principle.

✅ Key Points:

The base class (or parent class) contains common features.
The derived class (or child class) inherits from the base class and can:

Use parent’s methods and attributes
Add its own attributes and methods
Modify (override) methods from the parent class.

Think of inheritance like a family tree. A child inherits traits (methods and attributes) from their parents, but
they can also have their own unique traits.

Single Inheritance
Single Inheritance is a type of inheritance where a child class inherits from only one parent class. This allows
the child class to reuse the methods and attributes of the parent class while also adding its own unique
features.

🔹 1. Creating a Parent Class

https://yasirbhutta.github.io/


https://yasirbhutta.github.io/ 2025-04-17

Page 2 of 6

class Person: 
    def __init__(self, name): 
        self.name = name 
 
    def introduce(self): 
        print(f"Hi, I'm {self.name}") 

🔍 Explanation:

__init__ is the constructor; it runs when the object is created.
introduce() is a method that prints a greeting.

🔹 2. Creating a Child Class (Inheritance)

class Student(Person): 
    pass

🔍 Explanation:

Student class inherits from Person using (Person).
pass means no additional code — it still works because it inherits from Person.

s = Student("Ali") 
s.introduce()  # Output: Hi, I'm Ali

🔹 3. Adding New Methods to the Child Class

class Student(Person): 
    def study(self): 
        print(f"{self.name} is studying.") 

s = Student("Bob") 
s.introduce()  # Inherited from Person 
s.study()      # Defined in Student

🔹 4. Overriding Methods
You can change how a method works in the child class.

https://yasirbhutta.github.io/


https://yasirbhutta.github.io/ 2025-04-17

Page 3 of 6

class Student(Person): 
    def introduce(self):  # Overriding the method 
        print(f"Hello, I'm student {self.name}") 

s = Student("Ahmad") 
s.introduce()  # Output: Hello, I'm student Ahmad

🔹 5. Using super() to Call the Parent Method

If you override a method, but still want to use the original version from the parent, use super().

class Student(Person): 
    def introduce(self): 
        super().introduce()  # Call Person's version 
        print("I'm also a student.") 

s = Student("Hamza") 
s.introduce() 
# Output:
# Hi, I'm Hamza
# I'm also a student.

Multilevel Inheritance in Python
Multilevel Inheritance is a type of inheritance where a class (child class) inherits from another class (parent
class), and then another class (grandchild class) inherits from the child class. This forms a chain of inheritance.

Person (Parent Class) 
    ↳ Student (Child Class) 
        ↳ GraduateStudent (Grandchild Class) 

Multilevel Inheritance Example: Person, Student, and GraduateStudent in Python

class Person: 
    def speak(self): 
        print("Person speaks") 
 
class Student(Person): 
    def study(self): 

https://yasirbhutta.github.io/


https://yasirbhutta.github.io/ 2025-04-17

Page 4 of 6

        print("Student studies") 
 
class GraduateStudent(Student): 
    def research(self): 
        print("Graduate student does research") 
 
g = GraduateStudent() 
g.speak() 
g.study() 
g.research() 

Example: E-Commerce Product Catalog

Scenario

Different types of products (e.g., physical, digital, subscription) share common attributes but have unique
behaviors. Inheritance helps avoid code duplication.

Base Class

class Product: 
    def __init__(self, name, price, sku): 
        self.name = name 
        self.price = price 
        self.sku = sku 
 
    def apply_discount(self, discount_percent): 
        self.price *= (1 - discount_percent / 100) 
        return self.price 
 
    def get_description(self): 
        return f"{self.name} (SKU: {self.sku}) - ${self.price:.2f}"

Subclasses with Specialized Logic

class DigitalProduct(Product): 
    def __init__(self, name, price, sku, file_size): 
        super().__init__(name, price, sku) 
        self.file_size = file_size  # Unique to digital products 
 
    def download_link(self): 
        return f"https://store.com/download/{self.sku}" 
 
class PhysicalProduct(Product): 
    def __init__(self, name, price, sku, weight): 
        super().__init__(name, price, sku) 
        self.weight = weight  # In grams 
 

https://yasirbhutta.github.io/


https://yasirbhutta.github.io/ 2025-04-17

Page 5 of 6

    def calculate_shipping(self): 
        return max(5, self.weight * 0.01)  # $0.01 per gram, min $5 
 
class SubscriptionProduct(Product): 
    def __init__(self, name, price, sku, duration_months): 
        super().__init__(name, price, sku) 
        self.duration_months = duration_months 
 
    def renew(self): 
        print(f"Subscription renewed for {self.duration_months} months.") 

Usage

# Create instances 
ebook = DigitalProduct("Python Guide", 29.99, "D123", "50MB") 
tshirt = PhysicalProduct("Python T-Shirt", 19.99, "P456", 300) 
subscription = SubscriptionProduct("Premium Access", 9.99, "S789", 12) 
 
# Use inherited methods 
ebook.apply_discount(10)  # Applies 10% discount 
print(ebook.get_description())  # Output: "Python Guide (SKU: D123) - $26.99" 
 
# Use subclass-specific methods 
print(tshirt.calculate_shipping())  # Output: 5.0 (300g * $0.01 = $3, but min $5) 
print(subscription.renew())         # Output: "Subscription renewed for 12 
months."

Keypoints

1. Code Reuse: Common logic like apply_discount is defined once in the base class.
2. Specialization: Subclasses add unique attributes (file_size, weight) and methods (download_link,
calculate_shipping).

3. Polymorphism: All products can be treated uniformly (e.g., stored in a list of Product objects).
4. Extensibility: New product types (e.g., BundleProduct) can be added without modifying existing code.

This example mirrors real-world systems like Shopify or WooCommerce, where inheritance simplifies
managing diverse product types.

🧠 Summary

Concept Description

class Child(Parent) Defines a new class that inherits from Parent

super() Calls a method from the parent class

Method override Redefine a parent method in the child class

Reusability Inheritance helps reuse code and reduce repetition

https://yasirbhutta.github.io/


https://yasirbhutta.github.io/ 2025-04-17

Page 6 of 6

Common Mistakes to Avoid
Forgetting to use self in methods.
Not calling the parent class's __init__ method when overriding it.
Overriding a method but forgetting to use super() if needed.

https://yasirbhutta.github.io/

