https://yasirbhutta.github.io/ 2025-04-09

Python Control Flow Statements: The else Clauses on Loops

In Python, the clause can be used with loops (and). This may be surprising at first since most people
associate with if statements. However, in loops, the clause has a unique behavior:

* The block is executed only if the loop completes all its iterations without encountering a

statement.

¢ If the loop is exited early because of a , the block is skipped.
The clause in loops (for and) in Python is a bit unusual because most people associate with
statements. In the context of loops, the clause is executed only when the loop finishes normally, meaning it wasn't
interrupted by a statement.
Syntax for Python Clause in Loops
The clause can be used with both and loops in Python. Here's the general syntax:

For Loop with else

for item in iterable:
Code block to execute for each item
if condition:
break # Exit the loop early
else:
Code block to execute if the loop completes without a break

While Loop with else

while condition:
Code block to execute while the condition is True
if condition_to_break:
break # Exit the loop early
else:
Code block to execute if the loop completes without a break

How It Works:

1. With a loop:

o The block runs if the loop completes all its iterations without hitting a
o If the loop is terminated by a , the block is skipped.
2. With a loop:
© The block runs if the loop condition becomes naturally.
o If the loop is terminated by a , the block is skipped.
Example with a loop

Let's say we're searching for a specific number in a list.

Page 1 of 3

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2025-04-09

List of numbers
numbers = [1, 2, 3, 4, 5]

Number we want to find
target = 6

Iterate over the list
for num in numbers:

if num == target:
print("Found the target!")
break
else:

print("Target not found in the list.")

Explanation:

* The loop checks each number to see if it matches the
¢ |f the number is found, the loop breaks, and the clause is skipped.

¢ If the loop finishes without finding the target (i.e., without a), the block runs, printing "Target not
found in the list."

3. Combined Example

Use Case: Login system with limited attempts.

max_attempts = 3
correct_password = "secretl123"

for attempt in range(1l, max_attempts + 1):
password = input(f"Attempt {attempt}: Enter password: ")
if password != correct_password:
print("Wrong password. Try again.")
continue # Skip to next attempt
else:
print("Login successful!")
break # Exit loop on success
else:
print("Account locked. Too many failed attempts.")

Output (if user fails 3 times):

Page 2 of 3

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2025-04-09

Attempt 1: Enter password: hello

Wrong password. Try again.

Attempt 2: Enter password: test

Wrong password. Try again.

Attempt 3: Enter password: 123

Wrong password. Try again.

Account locked. Too many failed attempts.

Example with a loop

Counter
i=1

Loop condition
while i <= 5:
if 1 ==
print("Breaking the loop")
break
print(i)
i+=1
else:
print("Loop finished without breaking.™)

Explanation:

® The loop runs while 1 is less than or equal to 5.
¢ If 1 equals 3, the loop breaks.

¢ Since the loop is broken before it naturally ends, the block is skipped.
Why Use the Clause with Loops?
Using with loops can be helpful when you're performing a search or some operation where you want to know if
the loop completed successfully or was interrupted by a . It's a clean way to handle scenarios where the loop

might end early
Example #: for..else
for x in range(3):
print(x)

else:
print('Final x = %d"' % (x))

Page 3 of 3

https://yasirbhutta.github.io/

