
https://yasirbhutta.github.io/ 2025-06-23

Page 1 of 4

Table of Contents
1. What is a Shallow Copy?
2. How to Create a Shallow Copy
3. Example
4. When to Use Shallow Copy

In Python, a shallow copy is a new object that is a copy of the original object, but it does not create copies
of nested objects (objects inside objects). Instead, it only copies references to those inner objects.

1. ✅ What is a Shallow Copy?
It copies the outer object.
Inner elements (like lists or dictionaries inside a list) are not copied, only their references are copied.
Changes to nested objects in the copied object affect the original.

2. 📌 How to Create a Shallow Copy
1. Using copy() method (for lists, dicts, etc.):

original = [[1, 2], [3, 4]]
shallow = original.copy()

2. Using the copy module:

import copy
shallow = copy.copy(original)

3. 🔍 Example:

import copy

original = [[1, 2], [3, 4]]
shallow = copy.copy(original)

shallow[0][0] = 100

print("Original:", original) # [[100, 2], [3, 4]]
print("Shallow:", shallow) # [[100, 2], [3, 4]]

✅ The outer list is copied. ❌ The inner lists are shared, so modifying shallow[0][0] changes
original[0][0].

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2025-06-23

Page 2 of 4

Here's a line-by-line explanation of the code:

🔸 Code:

import copy

✅ This imports Python’s built-in copy module, which provides functions to perform shallow and deep copies.

original = [[1, 2], [3, 4]]

✅ A list named original is created. It contains two inner lists, making it a nested list (a list of lists).

shallow = copy.copy(original)

✅ This creates a shallow copy of original and stores it in shallow.

A new outer list is created.
The inner lists are not copied; only their references are copied.

So now:

original and shallow are two different outer lists.
But original[0] and shallow[0] point to the same inner list [1, 2].

shallow[0][0] = 100

✅ This changes the first element of the first inner list through the shallow copy.

Since the inner list [1, 2] is shared between original and shallow, the change affects both.

print("Original:", original) # [[100, 2], [3, 4]]
print("Shallow:", shallow) # [[100, 2], [3, 4]]

✅ Output shows that both original and shallow are affected:

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2025-06-23

Page 3 of 4

Original: [[100, 2], [3, 4]]
Shallow: [[100, 2], [3, 4]]

🔍 Summary:

copy.copy() only copies the outer list.
The inner lists are shared between original and shallow.
Changes to inner lists in the copy will affect the original.

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2025-06-23

Page 4 of 4

4. ✅ When to Use Shallow Copy
Use shallow copy when:

You want a new outer container.
You don’t plan to modify nested objects separately.

📘 Related Topics
What is a Deep Copy in Python? – A deep copy creates a completely independent copy of an object
and all nested objects inside it. 👉 Learn more

https://yasirbhutta.github.io/
file:///d%3A/OneDrive%20-%20Higher%20Education%20Commission/Documents/GitHub/yasirbhutta.github.io/python/docs/lists/deep-copy.md

