
https://yasirbhutta.github.io/ 2024-11-08

1

NumPy in Python
The NumPy library in Python is widely used for linear algebra due to its powerful array handling capabilities. It
provides efficient functions for a range of linear algebra operations, such as matrix creation, matrix operations,
determinants, eigenvalues, and linear equation solving.

Python Array Dimensions: Understanding Shape and Size

Reshape an Array

Python NumPy Tutorial: Indexing and Slicing

Vertically and Horizontally Stack Arrays with vstack and hstack

How to Find Unique Values in an Array

How to Handle Missing Values in NumPy with Masked Arrays

Generate a Random Number Between 0 and 1 in Python with #NumPy

3 Ways to Use a Random Generator

Linear Algebra with NumPy

1. Creating Matrices and Arrays

The np.array() function is used to create matrices (2D arrays) and vectors (1D arrays).

import numpy as np

Creating a vector
vector = np.array([1, 2, 3])

Creating a 2x2 matrix
matrix = np.array([[1, 2], [3, 4]])

Creating a 3x3 matrix with zeros
zero_matrix = np.zeros((3, 3))

Creating a 3x3 identity matrix
identity_matrix = np.eye(3)

How to Create 1D, 2D, and 3D Arrays in NumPy
Python NumPy Array Creation Methods Explained | Zeros, Ones, Empty, Arange, and Linspace

2. Basic Matrix Operations

Basic arithmetic operations are easy with NumPy arrays and can be performed element-wise or with specific
matrix functions.

https://yasirbhutta.github.io/
https://youtu.be/UIGM_suK5cI?si=C_CJkuDpjibE8XtE
https://youtu.be/pNqam8PzQ0M?si=xCofTbcU65tsFTc_
https://youtu.be/iIL2YIWecMI?si=Xpq25QHGWJ4peend
https://youtu.be/td_2hlU3FFM?si=QY3BwZl1_mVwlfxn
https://youtu.be/eEKAB7-FiAo?si=HI3py_HaD2zbYrNh
https://youtu.be/zPeU2QDRFug?si=9AxTAfTxzoPbruTr
https://youtu.be/t_7xqImRUpo?si=2bx7Ck319vt2BOdJ
https://youtu.be/1dbYOiQWauk?si=zt4nAdLYS9jPnIy2
https://youtu.be/08PDFhQhnNg?si=K9lvpDKAygx7NZzY
https://youtu.be/PI4UegrAYxs?si=v4imyXtI7YyBwH2Z

https://yasirbhutta.github.io/ 2024-11-08

2

Addition and Subtraction are element-wise.
Scalar Multiplication multiplies each element by a scalar value.
Matrix Multiplication (dot product) can be done with np.dot() or the @ operator.

A = np.array([[1, 2], [3, 4]])
B = np.array([[2, 0], [1, 3]])

Element-wise addition and subtraction
addition = A + B
subtraction = A - B

Scalar multiplication
scalar_multiplication = 2 * A

Matrix multiplication
matrix_multiplication = np.dot(A, B) # or A @ B

Mastering Arithmetic and Logical Operations for Efficient Data Processing
Matrix Multiplication using NumPy in Python

3. Transpose of a Matrix

Transposing a matrix (switching rows and columns) is straightforward with the .T attribute.

A = np.array([[1, 2], [3, 4]])
transpose_A = A.T

Matrix Transpose using NumPy in Python

4. Determinants

The determinant is a scalar value that can be computed using np.linalg.det(), which is useful in solving
linear systems and understanding matrix properties.

A = np.array([[1, 2], [3, 4]])
det_A = np.linalg.det(A) # Output: -2.0

5. Inverse of a Matrix

The inverse of a matrix (A) is another matrix (A^{-1}) such that (A \times A^{-1} = I) (the identity matrix).
Use np.linalg.inv() to find the inverse.

A = np.array([[1, 2], [3, 4]])
inverse_A = np.linalg.inv(A)

https://yasirbhutta.github.io/
https://youtu.be/i3WWayfEc6Q?si=xQ1Vi_J7QezK3ACG
https://youtu.be/6IAOoMDbxMM?si=CPeVGBXPpJHDIwRF
https://youtu.be/sF6aK9edzBQ?si=37iHrLA1lyfd_sw1

https://yasirbhutta.github.io/ 2024-11-08

3

Inverse of a Matrix in Python with NumPy

6. Solving Systems of Linear Equations

For a system of equations of the form (Ax = B), where (A) is a matrix of coefficients, (x) is a vector of
unknowns, and (B) is a vector of constants, we can solve for (x) using np.linalg.solve().

A = np.array([[3, 1], [1, 2]])
B = np.array([9, 8])
solution = np.linalg.solve(A, B)

7. Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental in linear transformations, physics, and machine learning. Use
np.linalg.eig() to find them.

A = np.array([[4, -2], [1, 1]])
eigenvalues, eigenvectors = np.linalg.eig(A)

8. Norms of Vectors and Matrices

The norm of a vector or matrix gives a measure of its magnitude. np.linalg.norm() calculates the norm,
and you can specify the order (e.g., 1-norm, 2-norm, or infinity norm).

vector = np.array([3, 4])
matrix = np.array([[1, 2], [3, 4]])

Euclidean norm (default is 2-norm)
norm_vector = np.linalg.norm(vector)

Frobenius norm (for matrices)
norm_matrix = np.linalg.norm(matrix, 'fro')

9. Rank of a Matrix

The rank of a matrix represents the maximum number of linearly independent row or column vectors.
np.linalg.matrix_rank() provides the rank of a matrix.

A = np.array([[1, 2], [2, 4]])
rank_A = np.linalg.matrix_rank(A)

10. Singular Value Decomposition (SVD)

https://yasirbhutta.github.io/
https://youtu.be/u4jBU1DYSPU?si=ERfp9uOn1P5KVbtv

https://yasirbhutta.github.io/ 2024-11-08

4

SVD decomposes a matrix into three matrices, useful in applications like image compression and data
reduction. np.linalg.svd() provides this decomposition.

A = np.array([[1, 2], [3, 4], [5, 6]])
U, S, V = np.linalg.svd(A)

Summary Table

Operation Function or Method Description

Matrix Creation
np.array(), np.zeros(),
np.eye()

Create matrices and arrays

Addition, Subtraction A + B, A - B Element-wise addition and subtraction

Scalar Multiplication 2 * A Multiply each element by a scalar

Matrix Multiplication np.dot(A, B) or A @ B Standard matrix multiplication

Transpose A.T Transpose of a matrix

Determinant np.linalg.det(A)
Scalar value representing matrix
characteristics

Inverse np.linalg.inv(A) Inverse of a matrix

Solve Linear Equations np.linalg.solve(A, B) Solves (Ax = B)

Eigenvalues and
Eigenvectors

np.linalg.eig(A) Returns eigenvalues and eigenvectors

Norms np.linalg.norm() Magnitude of vector/matrix

Rank np.linalg.matrix_rank(A) Max linearly independent vectors

Singular Value
Decomposition

np.linalg.svd(A)
Decomposes matrix into U, S, V
components

NumPy is highly optimized for numerical calculations, making it ideal for complex linear algebra applications.
Let me know if you’d like further explanations or examples for any of these functions!

Key Terms

True/False (Mark T for True and F for False)
Answer Key (True/False):

Multiple Choice (Select the best answer)
1. Which function would you use to determine the type of a variable in Python?

A) id()
B) type()

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-11-08

5

C) str()
D) isinstance()

Watch this video for the answer:

Answer key (Mutiple Choice):

Fill in the Blanks
Answer Key (Fill in the Blanks):

Exercises

Beginner: Basic concepts and syntax.

Intermediate: More complex problems involving data structures and algorithms.

1. Exercise: Access Reverse Diagonal Elements in a 2D List Based on Index Sum

Problem Statement: Write a Python program to access elements from a 2D list based on a specific condition.
The 2D list represents a matrix of integers, and your task is to use nested loops to find and print the elements
where the sum of the row index (i) and the column index (j) equals 2. These elements form a reverse diagonal
in the matrix.

Input:

You are given a 3x3 matrix arr:

arr = [[0, 1, 2], # Row 0 [3, 4, 5], # Row 1 [6, 7, 8] # Row 2]

Output:

Print the elements of the matrix where the sum of the row index and column index equals 2, along with their
positions.

Example Output:

Element at (0,2) is 2 Element at (1,1) is 4 Element at (2,0) is 6

Advanced: Challenging problems that require in-depth understanding and optimization.

Review Questions

References and Bibliography
For more details, see Appendix A.

Appendices

Appendix A: Data Tables

This section includes the data tables referred to in the text...

https://yasirbhutta.github.io/

