
https://yasirbhutta.github.io/ 2024-12-16

1

Pandas for Beginners
Connect with me: Youtube | LinkedIn | WhatsApp Channel | Web | Facebook | Twitter

Download PDF
To access the updated handouts, please click on the following link:
https://yasirbhutta.github.io/python/docs/modules/pandas.html

🎥 YouTube Playlists to Learn Python:

🔗 Python Tutorials for Beginners
🔗 Python Code Challenges | Quiz
🔗 Python Exercises

1. Introduction to Pandas

What is Pandas?
Installing Pandas (pip install pandas)
Importing Pandas (import pandas as pd)

2. Data Structures in Pandas

Series: A one-dimensional labeled array.
Creating a Series
Accessing elements in a Series

DataFrame: A two-dimensional labeled data structure (like a spreadsheet or SQL table).
Creating a DataFrame from:

Lists of lists
Dictionaries
CSV/Excel files

3. Basic Operations with DataFrames

Viewing data:
head(), tail(), info(), describe()

Selecting data:
Columns (df['column'])
Rows (iloc, loc)

Filtering rows based on conditions
Adding and deleting columns

4. Data Cleaning

Handling missing values:
dropna()
fillna()

Renaming columns
Changing data types (astype())

https://yasirbhutta.github.io/
https://www.youtube.com/yasirbhutta
https://www.linkedin.com/in/yasirbhutta/
https://whatsapp.com/channel/0029VaeGV0517En4iyZGWn2P
https://yasirbhutta.github.io/
https://www.facebook.com/yasirbhutta786
https://twitter.com/yasirbhutta
https://yasirbhutta.github.io/python/docs/modules/pandas.pdf
file:///d%3A/OneDrive%20-%20Higher%20Education%20Commission/Documents/GitHub/yasirbhutta.github.io/python/docs/modules/%5B../yasirbhutta.github.io/index.md%5D(https://yasirbhutta.github.io/python/docs/modules/pandas.html)
https://youtube.com/playlist?list=PLKYRx0Ibk7Vi-CC7ik98qT0VKK0F7ikja
https://www.youtube.com/playlist?list=PLKYRx0Ibk7VjyzKhi5vH35GQKQl_TnWOn
https://www.youtube.com/playlist?list=PLKYRx0Ibk7Vh9nG-GwBzsjP5TfOCjv1LH

https://yasirbhutta.github.io/ 2024-12-16

2

5. Data Manipulation

Sorting data (sort_values())
Grouping data (groupby())
Aggregations (mean(), sum(), count(), etc.)
Merging and joining DataFrames (merge(), concat())

6. Reading and Writing Data

Reading from:
CSV (read_csv())
Excel (read_excel())
JSON (read_json())

Writing to:
CSV (to_csv())
Excel (to_excel())

7. Data Visualization with Pandas

Basic plots with Pandas:
Line plot, bar plot, histogram, scatter plot (df.plot())

8. Useful Functions for Analysis

value_counts()
unique()
nunique()
pivot_table()

9. Practical Examples

Analyzing real-world datasets
Cleaning messy data
Simple data analysis projects

1. 📌 Introduction to Pandas

1.1 What is Pandas?

Definition: pandas is a fast, powerful, flexible and easy to use open source data analysis and
manipulation tool, built on top of the Python programming language. [1]

Key Features:

Data alignment and missing data handling.
Support for importing/exporting data from various file formats (CSV, Excel, SQL, etc.).
Tools for reshaping, pivoting, and aggregating data.
Time series functionality.

For more details on Data alignment, see Appendix B.

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

3

1.2 Why Use Pandas?

Benefits:
Simplifies data analysis tasks.
Efficient handling of large datasets.
Allows easy data cleaning and preprocessing.
Combines flexibility with powerful tools for slicing, filtering, and transforming data.

1.3 Installing Pandas

Install Pandas using pip:

pip install pandas

Verifying Installation:

import pandas as pd
print(pd.__version__)

1.4 Importing Pandas

Import the Pandas library with a conventional alias:

import pandas as pd

Why pd?
It’s a commonly used alias to shorten the code and improve readability.

2. Basic data structures in pandas

Pandas provides two types of classes for handling data:

Series:
a one-dimensional labeled array holding data of any type such as integers, strings, Python
objects etc. similar to a column in a spreadsheet. [2]

DataFrame:
a two-dimensional data structure that holds data like a two-dimension array or a table with rows
and columns. [2]

Creating a Simple Series

Creating a Series by passing a list of values, letting pandas create a default RangeIndex. [2]

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

4

import pandas as pd
import numpy as np

s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s)

np.nan stands for "Not a Number", representing a missing or undefined numerical value (similar to NaN in
other contexts).

Indexing: Both Series and DataFrames have index labels to identify data.

Creating a Simple DataFrame

import pandas as pd

Creating a DataFrame from a dictionary
data = {
 'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'City': ['New York', 'Los Angeles', 'Chicago']
}

df = pd.DataFrame(data)
print(df)

Output:

 Name Age City
0 Alice 25 New York
1 Bob 30 Los Angeles
2 Charlie 35 Chicago

Example: How to Create a Data Frame with Fruits and Colors Example

1. Loading CSV Datasets

You can load CSV files from your local system or directly from a URL into Pandas using pd.read_csv().

Example Titanic Dataset (from a URL)

import pandas as pd

Loading the Titanic dataset from a URL
url =
"https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"

https://yasirbhutta.github.io/
https://www.youtube.com/watch?v=aR8xiyyLoRk&list=PLKYRx0Ibk7Vi-CC7ik98qT0VKK0F7ikja&index=12

https://yasirbhutta.github.io/ 2024-12-16

5

titanic = pd.read_csv(url)
print(titanic.head())

Example: Local CSV File

Loading a local CSV file

titanic = pd.read_csv("path_to_your_file/titanic.csv")
print(titanic.head())

2. Loading Excel Files

Pandas can easily read Excel files using pd.read_excel().

Example: Tasks Trackers Dataset download

Loading an Excel file

import pandas as pd

tasks = pd.read_excel("tasks_ds.xlsx")
print(tasks.head())

3. Basic Operations with DataFrames

3.1 Viewing Data

When working with DataFrames in libraries like pandas, it's essential to quickly inspect your data to
understand its structure. Below are some key functions to view data:

head(n): Displays the first n rows (default is 5).

import pandas as pd
df = pd.read_csv('titanic.csv')
print(df.head())

tail(n): Displays the last n rows (default is 5).

df.tail()

https://yasirbhutta.github.io/
https://wpreportbuilder.com/examples/task-tracker-generate-excel-xlsx/

https://yasirbhutta.github.io/ 2024-12-16

6

info(): Provides a concise summary of the DataFrame, including column names, non-null counts, and
data types.

df.info()

describe(): Generates summary statistics for numerical columns, such as mean, standard deviation,
and quartiles.

df.describe()

3.2 Selecting Data

Selecting specific parts of a DataFrame is a common operation. You can select columns and rows using
different methods:

Selecting Columns

Using the column name in square brackets:

df['column_name']

Selecting multiple columns by providing a list of column names:

df[['col1', 'col2']]

Loading the Titanic dataset (assuming it's available as a CSV file):

import pandas as pd

Load the Titanic dataset
df = pd.read_csv('titanic.csv')

Example: Selecting a Single Column

For example, to select the "Age" column:

df['Age']

This returns a Series representing the "Age" column.

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

7

Example: Selecting Multiple Columns

To select "Name", "Age", and "Survived" columns:

df[['Name', 'Age', 'Survived']]

This returns a DataFrame with the specified columns.

Selecting Rows

Using iloc (integer-location based): Select rows by their index position.

df.iloc[0] # First row
df.iloc[1:4] # Rows 2 to 4

Using loc (label-based): Select rows by their index labels.

df.loc[0] # Row with index 0
df.loc[0:3] # Rows from index 0 to 3 (inclusive)
df.loc[df['col'] > 10] # Rows where 'col' > 10

Selecting Rows with the Titanic Dataset

1. Loading the Titanic Dataset

Let's load the dataset and inspect its structure:

import pandas as pd

Load the Titanic dataset (assuming it's available as 'titanic.csv')
df = pd.read_csv('titanic.csv')

Display the first few rows to understand the data
print(df.head())

This might display something like:

PassengerId Name Age Survived Pclass

1 Braund, Mr. Owen Harris 22.0 0 3

2 Cumings, Mrs. John Bradley 38.0 1 1

3 Heikkinen, Miss. Laina 26.0 1 3

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

8

PassengerId Name Age Survived Pclass

4 Futrelle, Mrs. Jacques Heath 35.0 1 1

5 Allen, Mr. William Henry 35.0 0 3

Selecting Rows Using iloc (Integer-location Based)

Select the First Row:

first_row = df.iloc[0]
print(first_row)

Output:

PassengerId 1
Name Braund, Mr. Owen Harris
Age 22.0
Survived 0
Pclass 3
Name: 0, dtype: object

Select Rows 2 to 4 (indices 1 to 3):

rows_2_to_4 = df.iloc[1:4]
print(rows_2_to_4)

Output:

 PassengerId Name Age Survived Pclass
1 2 Cumings, Mrs. John Bradley 38.0 1 1
2 3 Heikkinen, Miss. Laina 26.0 1 3
3 4 Futrelle, Mrs. Jacques Heath 35.0 1 1

Selecting Rows Using loc (Label-based)

Select the Row with Index 0:

row_index_0 = df.loc[0]
print(row_index_0)

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

9

Output:

PassengerId 1
Name Braund, Mr. Owen Harris
Age 22.0
Survived 0
Pclass 3
Name: 0, dtype: object

Select Rows with Index 0 to 3 (inclusive):

rows_0_to_3 = df.loc[0:3]
print(rows_0_to_3)

Output:

 PassengerId Name Age Survived Pclass
0 1 Braund, Mr. Owen Harris 22.0 0 3
1 2 Cumings, Mrs. John Bradley 38.0 1 1
2 3 Heikkinen, Miss. Laina 26.0 1 3
3 4 Futrelle, Mrs. Jacques Heath 35.0 1 1

Select Rows Where Age > 30:

rows_age_above_30 = df.loc[df['Age'] > 30]
print(rows_age_above_30.head())

Output:

 PassengerId Name Age Survived Pclass
1 2 Cumings, Mrs. John Bradley 38.0 1 1
3 4 Futrelle, Mrs. Jacques Heath 35.0 1 1
5 6 Moran, Mr. James 32.0 0 3
6 7 McCarthy, Mr. Timothy J 54.0 0 3
9 10 Nasser, Mrs. Nicholas 14.0 1 2

3.3 Filtering Rows Based on Conditions

Filtering rows allows you to extract data that meets certain criteria. Conditions can be combined using logical
operators:

Filter based on a single condition:

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

10

df[df['column_name'] > 50]

Filter based on multiple conditions:

Using AND (&):

df[(df['col1'] > 50) & (df['col2'] == 'Value')]

Using OR (|):

df[(df['col1'] > 50) | (df['col2'] == 'Value')]

Filter based on text matching:

df[df['col'].str.contains('keyword')]

3.4 Adding and Deleting Columns

Adding a New Column

You can create new columns by assigning values or calculations based on existing columns:

df['new_col'] = df['col1'] + df['col2']

Deleting a Column

Use the drop method to remove a column. Set axis=1 to specify columns:

df.drop('col_to_delete', axis=1, inplace=True)

Alternatively, use the del statement:

del df['col_to_delete']

1.9 Key Pandas Terminology

Index: The labels for rows in a Series or DataFrame.
Column: A named set of data within a DataFrame.

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

11

Row: An individual record within a DataFrame.

Key Terms

True/False (Mark T for True and F for False)
Answer Key (True/False):

Multiple Choice (Select the best answer)
1. Which function would you use to determine the type of a variable in Python?

A) id()
B) type()
C) str()
D) isinstance()

Watch this video for the answer:

Answer key (Mutiple Choice):

Fill in the Blanks
Answer Key (Fill in the Blanks):

Exercises
1. Skill Level Categories Define clear categories based on skill levels, such as:

Beginner: Basic concepts and syntax. Intermediate: More complex problems involving data structures and
algorithms. Advanced: Challenging problems that require in-depth understanding and optimization.

Review Questions
Answers to Review Questions:

References and Bibliography
[1] Pandas, “Python Data Analysis Library,” Pydata.org, 2018. https://pandas.pydata.org/
[2] Pandas, “User Guide — pandas 1.0.1 documentation,” Pydata.org, 2014.
https://pandas.pydata.org/docs/user_guide/index.html

Appendices

Appendix A: Loading and Handling Datasets in Pandas

Pandas doesn't come with built-in datasets like some other libraries, but it offers many ways to load and
handle external datasets. You can easily read data from CSV, Excel, SQL, JSON, and other formats using
Pandas.

Here are common datasets you can load and work with in Pandas, along with some examples of reading them
into your environment:

https://yasirbhutta.github.io/
https://pandas.pydata.org/

https://yasirbhutta.github.io/ 2024-12-16

12

1. Loading CSV Datasets

You can load CSV files from your local system or directly from a URL into Pandas using pd.read_csv().

Example Titanic Dataset (from a URL)

import pandas as pd

Loading the Titanic dataset from a URL
url =
"https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"
titanic = pd.read_csv(url)
print(titanic.head())

Example: Local CSV File

Loading a local CSV file

titanic = pd.read_csv("path_to_your_file/titanic.csv")
print(titanic.head())

2. Loading Excel Files

Pandas can easily read Excel files using pd.read_excel().

#xample: Superstore Dataset

Loading an Excel file

superstore = pd.read_excel("path_to_your_file/superstore_sales.xlsx")
print(superstore.head())

3. Loading JSON Files

You can load JSON files using pd.read_json().

Example: JSON File Loading

Loading a JSON file
json_data = pd.read_json("path_to_your_file/data.json")
print(json_data.head())

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

13

4. Loading SQL Databases

If you're working with databases, Pandas can directly query them using SQL queries.

Example: Loading Data from SQL

import sqlite3

Create connection to your SQLite database
conn = sqlite3.connect('database_name.db')

Query the database
data = pd.read_sql_query("SELECT * FROM table_name", conn)
print(data.head())

5. Loading HTML Tables

Pandas can extract tables from HTML web pages using pd.read_html().

Example: Loading Data from an HTML Table

Loading data from a webpage with HTML tables
url = "https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)"
tables = pd.read_html(url)
print(tables[0].head()) # The first table on the page

6. Loading Data from APIs

You can load data from APIs that return JSON, CSV, or other formats. For example, using the Kaggle API, you
can download datasets and load them into Pandas.

Example: Loading Kaggle Dataset (after downloading)

After downloading a dataset from Kaggle
kaggle_data = pd.read_csv("path_to_downloaded_kaggle_file.csv")
print(kaggle_data.head())

7. Loading Data from Google Sheets

You can also read data from Google Sheets by exporting them as CSV and reading into Pandas.

Example: Loading Data from Google Sheets

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

14

Google Sheets shared link with export format as CSV
sheet_url = "https://docs.google.com/spreadsheets/d/your_sheet_id/export?
format=csv"
google_sheets_data = pd.read_csv(sheet_url)
print(google_sheets_data.head())

8. Loading Data from Zip Files

Pandas can read CSVs from zipped files directly without unzipping them.

Example: Loading from a Zip File

Loading CSV from a zipped file
zip_url = "https://your_url/file.zip"
zipped_data = pd.read_csv(zip_url, compression='zip')
print(zipped_data.head())

9. Loading Data from a Clipboard

You can even copy data from somewhere and paste it into Pandas using pd.read_clipboard().

Example: Loading Clipboard Data

Assuming you've copied a table from a webpage or a document
clipboard_data = pd.read_clipboard()
print(clipboard_data.head())

10. Sample Datasets in Python Libraries

While Pandas itself doesn’t provide built-in datasets, you can use datasets from libraries like Seaborn and
Scikit-learn and load them into Pandas:

Example: Seaborn's Titanic Dataset into Pandas

import seaborn as sns

Load Titanic dataset from Seaborn and convert to Pandas DataFrame
titanic = sns.load_dataset('titanic')
print(titanic.head())

Example: Scikit-learn Iris Dataset into Pandas

from sklearn.datasets import load_iris

Load Iris dataset and convert to Pandas DataFrame

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

15

iris = load_iris()
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
print(iris_df.head())

How to store MySQL results in a pandas DataFrame using Python
There are two primary ways to store MySQL results in a pandas DataFrame using Python:

1. Using pandas.read_sql()

This is the recommended approach as it's specifically designed for this purpose. Here's how it works:

import pandas as pd
import mysql.connector

Establish connection
mydb = mysql.connector.connect(
 host="localhost",
 user="yourusername",
 password="yourpassword",
 database="mydatabase"
)

Define your SQL query
sql = "SELECT * FROM mytable" # Replace with your specific query

Read the results into a DataFrame
df = pd.read_sql(sql, mydb) # mydb is the connection object

Close the connection
mydb.close()

Now you can work with the data in your DataFrame (df)
print(df.head()) # View the first few rows

Explanation:

Import pandas and mysql.connector.
Establish a connection to your MySQL database.
Define your SQL query string (sql).
Use pd.read_sql(sql, mydb) to execute the query and store the results in a pandas DataFrame
named df. The mydb argument provides the connection object.
Close the connection after reading the data.
Now you can use the df DataFrame for further analysis or manipulation.

2. Using cursor.fetchall() and DataFrame constructor

This method involves fetching the results as a list of tuples and then constructing a DataFrame from it. Here's
an example:

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

16

import pandas as pd
import mysql.connector

Establish connection
mydb = mysql.connector.connect(
 host="localhost",
 user="yourusername",
 password="yourpassword",
 database="mydatabase"
)

mycursor = mydb.cursor()

Execute your SQL query
sql = "SELECT * FROM mytable"
mycursor.execute(sql)

Fetch the results
data = mycursor.fetchall() # data is a list of tuples

Define column names (optional, but recommended for clarity)
column_names = [i[0] for i in mycursor.description] # Get column names from
cursor description

Create the DataFrame
df = pd.DataFrame(data, columns=column_names)

Close connection (same as previous method)
mycursor.close()
mydb.close()

Now you can work with the DataFrame (df)
print(df.head())

Explanation:

Import necessary libraries.
Establish connection and create a cursor.
Execute your SQL query using the cursor.
Fetch the results using fetchall() which returns a list of tuples.
Optionally, define column names based on the cursor description.
Construct the DataFrame using pd.DataFrame(data, columns=column_names).
Close the connection.
Now you can use the df DataFrame for further analysis.

Choosing the right approach:

pandas.read_sql() is generally preferred as it's more concise and efficient, especially for larger
datasets.

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

17

The cursor-based approach might be useful if you need more control over the cursor object or want to
perform additional operations before constructing the DataFrame.

Example #: Using SQLAlchemy Engine

from sqlalchemy import create_engine

Construct the connection URL (replace with your credentials)
engine =
create_engine("mysql+mysqlconnector://yourusername:yourpassword@host/yourdatabase"
)

df = pd.read_sql(sql, engine)

from sqlalchemy import create_engine

Construct the connection URL (replace with your credentials)
engine = create_engine("mysql+mysqlconnector://root:abc1234@localhost/library")

Define your SQL query
sql = "SELECT * FROM books" # Replace with your specific query

Read the results into a DataFrame
df = pd.read_sql(sql, engine) # mydb is the connection object

Close the connection

Now you can work with the data in your DataFrame (df)
print(df.head()) # View the first few rows

Example #: Using Database String URI

import pandas as pd

Replace with your connection string details
connection_string =
"mysql+mysqlconnector://yourusername:yourpassword@host/yourdatabase"
df = pd.read_sql(sql, connection_string)

Appendix B: 📌 Data Alignment in Pandas

Data alignment refers to how Pandas handles operations between data structures (such as Series or
DataFrames) with differing indexes. When performing operations like addition, subtraction, or merging,
Pandas automatically aligns the data by their index labels to ensure that operations happen between
corresponding elements.

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

18

This feature helps simplify data operations and avoid errors, especially when dealing with real-world datasets
that may not always be perfectly aligned.

🔹 Example of Data Alignment with Series

When performing operations between two Series with different indexes, Pandas aligns the data by the index
labels and fills any missing values with NaN (Not a Number).

import pandas as pd

First Series
s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])

Second Series with different index
s2 = pd.Series([4, 5, 6], index=['b', 'c', 'd'])

Adding the two Series
result = s1 + s2

print(result)

Output:

a NaN
b 6.0
c 8.0
d NaN
dtype: float64

Explanation:

The elements with matching indexes (b and c) are added together.
For indexes a and d, there are no corresponding values in the other Series, so the result is NaN.

🔹 Data Alignment with DataFrames

When performing operations on DataFrames, Pandas aligns both rows and columns based on their respective
indexes.

First DataFrame
df1 = pd.DataFrame({
 'A': [1, 2],
 'B': [3, 4]
}, index=['row1', 'row2'])

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

19

Second DataFrame with different columns and rows
df2 = pd.DataFrame({
 'B': [5, 6],
 'C': [7, 8]
}, index=['row2', 'row3'])

Adding the two DataFrames
result = df1 + df2

print(result)

Output:

 A B C
row1 NaN NaN NaN
row2 NaN 9.0 NaN
row3 NaN NaN NaN

Explanation:

The addition is performed where both rows and columns match (row2 and B).
Missing rows or columns result in NaN.

🔹 Handling Missing Data During Alignment

You can handle missing data resulting from alignment by using methods like:

fillna(): Replace NaN with a specific value.
add(), sub(), etc. with fill_value: Provide a default value for missing entries.

Example using fill_value:

result = s1.add(s2, fill_value=0)
print(result)

Output:

a 1.0
b 6.0
c 8.0
d 6.0
dtype: float64

https://yasirbhutta.github.io/

https://yasirbhutta.github.io/ 2024-12-16

20

✅ Summary

Data Alignment ensures operations occur between matching indexes.
Non-matching indexes result in NaN unless specified otherwise.
Pandas handles alignment automatically, making data manipulation intuitive and error-free.

https://yasirbhutta.github.io/

