Learn with Yasir

Share Your Feedback

100 Days of Applied Statistics for Data Science, Machine Learning, and Analytics


Explore the 100 Days of Applied Statistics for Data Science, Machine Learning, and Analytics β€” a structured roadmap covering foundational statistics, probability, inference, regression, machine learning statistics, and applied analytics with hands-on Python (NumPy, Pandas, Matplotlib, Seaborn, SciPy, Statsmodels, Scikit-Learn) examples and real-world projects.

road map 100 days applied statistics

🟒 PHASE 1: Statistical Foundations (Days 1–20)

Week 1: Introduction to Statistics & Data

  • Day 1 – What is Statistics? Role in DS, ML, AI
  • Day 2 – Types of Data (Qualitative vs Quantitative)
  • Day 3 – Scales of Measurement (Nominal, Ordinal, Interval, Ratio)
  • Day 4 – Population vs Sample
  • Day 5 – Descriptive vs Inferential Statistics

  • Day 6 – Data Collection Methods
  • Day 7 – Bias, Errors, and Data Quality

Week 2: Descriptive Statistics

  • Day 8 – Mean, Median, Mode
  • Day 9 – Variance and Standard Deviation
  • Day 10 – Range, IQR, Percentiles
  • Day 11 – Skewness and Kurtosis
  • Day 12 – Summary Statistics using Python (NumPy, Pandas)

  • Day 13 – Real Dataset Practice
  • Day 14 – Mini Quiz + Lab

Week 3: Data Visualization

  • Day 15 – Why Visualization Matters
  • Day 16 – Bar Charts, Line Charts
  • Day 17 – Histograms & Density Plots
  • Day 18 – Box Plots & Violin Plots
  • Day 19 – Scatter Plots & Pair Plots
  • Day 20 – Visualization with Matplotlib & Seaborn (Lab)

🟒 PHASE 2: Probability & Randomness (Days 21–40)

Week 4: Probability Basics

  • Day 21 – What is Probability?
  • Day 22 – Sample Space & Events
  • Day 23 – Rules of Probability
  • Day 24 – Conditional Probability
  • Day 25 – Bayes’ Theorem

  • Day 26 – Real-Life Probability Examples
  • Day 27 – Python Probability Simulations

Week 5: Random Variables

  • Day 28 – Discrete Random Variables
  • Day 29 – Continuous Random Variables
  • Day 30 – Probability Mass Function (PMF)
  • Day 31 – Probability Density Function (PDF)
  • Day 32 – Cumulative Distribution Function (CDF)

  • Day 33 – Expectation & Variance
  • Day 34 – Practice + Quiz

Week 6: Probability Distributions

  • Day 35 – Bernoulli Distribution
  • Day 36 – Binomial Distribution
  • Day 37 – Poisson Distribution
  • Day 38 – Uniform Distribution
  • Day 39 – Normal Distribution
  • Day 40 – Distribution Visualization with Python

🟒 PHASE 3: Statistical Inference (Days 41–60)

Week 7: Sampling & Estimation

  • Day 41 – Sampling Techniques
  • Day 42 – Sampling Distributions
  • Day 43 – Central Limit Theorem
  • Day 44 – Point Estimation
  • Day 45 – Confidence Intervals

  • Day 46 – CI using Python
  • Day 47 – Practice Lab

Week 8: Hypothesis Testing

  • Day 48 – Hypothesis Testing Concept
  • Day 49 – Null & Alternative Hypothesis
  • Day 50 – Type I & Type II Errors
  • Day 51 – p-value & Significance Level
  • Day 52 – One-tailed vs Two-tailed Tests

  • Day 53 – Z-test
  • Day 54 – t-test

Week 9: Advanced Hypothesis Testing

  • Day 55 – Paired vs Independent t-test
  • Day 56 – Chi-Square Test
  • Day 57 – ANOVA
  • Day 58 – Hypothesis Testing in Python (SciPy)
  • Day 59 – Case Studies
  • Day 60 – Mid-Course Assessment

🟒 PHASE 4: Regression & Correlation (Days 61–75)

Week 10: Correlation Analysis

  • Day 61 – Covariance
  • Day 62 – Pearson Correlation
  • Day 63 – Spearman Rank Correlation
  • Day 64 – Correlation vs Causation
  • Day 65 – Correlation in Python

Week 11: Regression Basics

  • Day 66 – Introduction to Regression
  • Day 67 – Simple Linear Regression
  • Day 68 – Regression Assumptions
  • Day 69 – Model Evaluation (RΒ², MSE)
  • Day 70 – Linear Regression using Python

Week 12: Multiple Regression

  • Day 71 – Multiple Linear Regression
  • Day 72 – Feature Interpretation
  • Day 73 – Multicollinearity
  • Day 74 – Residual Analysis
  • Day 75 – Regression Case Study

🟒 PHASE 5: Statistics for Machine Learning (Days 76–90)

Week 13: Statistical Thinking in ML

  • Day 76 – Statistics vs Machine Learning
  • Day 77 – Bias-Variance Tradeoff
  • Day 78 – Overfitting & Underfitting
  • Day 79 – Train-Test Split
  • Day 80 – Cross-Validation

Week 14: Classification Statistics

  • Day 81 – Logistic Regression (Statistics View)
  • Day 82 – Sigmoid Function
  • Day 83 – Odds & Log-Odds
  • Day 84 – Confusion Matrix
  • Day 85 – Precision, Recall, F1-Score

Week 15: Feature Engineering & Scaling

  • Day 86 – Feature Scaling
  • Day 87 – Normalization vs Standardization
  • Day 88 – Handling Missing Data
  • Day 89 – Outlier Detection
  • Day 90 – ML Preprocessing Lab

🟒 PHASE 6: Applied Analytics & Capstone (Days 91–100)

Week 16: Real-World Analytics

  • Day 91 – Exploratory Data Analysis (EDA)
  • Day 92 – Business Analytics Case Study
  • Day 93 – A/B Testing
  • Day 94 – Time-Series Basics
  • Day 95 – Dashboard-Driven Insights

Week 17: Capstone Project

  • Day 96 – Project Problem Selection
  • Day 97 – Data Cleaning & EDA
  • Day 98 – Statistical Analysis
  • Day 99 – Model Interpretation
  • Day 100 – Final Presentation & Evaluation πŸŽ“

🧰 Tools Used

  • Python
  • NumPy, Pandas
  • Matplotlib, Seaborn
  • SciPy, Statsmodels
  • Scikit-Learn