Learn Data Analysis with Python & Pandas – 100-Day Bootcamp for Beginners
Master Python & Pandas in 100 days with real-world projects! Analyze TikTok trends, Spotify data, and sports stats. Perfect for beginners (15+) – includes cheat sheets, datasets, and career prep. Start today!
🌐 Phase 1: Python & Pandas Foundation (Days 1-30)
📅 Week 1-2: Python Basics
Goal: Automate boring tasks with Python.
Day 1-3: Variables/Loops → Simulate a McDonald’s order system 🍟
Day 4-5: Functions → Build a meme generator (PIL library)
Day 6-7: Lists/Dicts → Track FIFA player stats ⚽
Pandas Sneak Peek:
Day 8: Pandas Series → Analyze your Spotify Wrapped 🎵
Day 9: DataFrames → Clean a messy COVID-19 dataset 🦠
📅 Week 3-4: Pandas Core Skills
Goal: Clean, filter, and analyze data like a pro.
Day 10: Reading Data → CSV/Excel/JSON (Try: Netflix Shows)
Day 11: Filtering → Find the most expensive Pokémon cards 💰
Day 12:groupby() → Compare pizza toppings by country 🍕
Day 13:apply() → Calculate BMI from health data 🏋️
Day 14:Data Detective Challenge → Solve a bank fraud case (fake data) 🕵️
Advanced Pandas:
Day 15: Multi-indexing → Analyze stock market tiers 📈
Day 16:pivot_table() → Summarize school exam results 📚
Day 17:merge() → Combine TikTok + Instagram hashtags
📊 Phase 2: Data Wrangling & Visualization (Days 31-60)
📅 Week 5-6: Data Cleaning
Goal: Handle messy real-world data.
Day 31: Missing Data → Fix a hospital patient record 🏥
Day 32: Duplicates → Clean e-commerce orders 🛒
Day 33: Regex → Extract emails from text 📧
Day 34: DateTime → Analyze Uber ride patterns 🚖
Day 35:Project:Clean a Wikipedia dataset
Pandas Pro Tips:
Day 36:eval() for fast calculations ⚡
Day 37:Styler → Highlight data in Jupyter 🎨
📅 Week 7-8: Visualization
Goal: Tell stories with data.
Day 38: Matplotlib → Plot your sleep cycle 😴
Day 39: Seaborn → Spotify song moods 🎧
Day 40: Plotly → Interactive map of UFO sightings 👽
Day 41: Pandas + Seaborn → Correlation heatmaps 🔥
Day 42:Misleading Graphs → Spot the lie 🤥
Pandas Integration:
Day 43:df.plot() → Customize plots directly in Pandas
Day 44: Export to HTML → Build a simple dashboard
💻 Phase 3: Advanced Pandas & Real Projects (Days 61-100)
📅 Week 9-10: Web Scraping + APIs
Goal: Extract live data.
Day 61: Pandas + BeautifulSoup → Scrape weather data 🌦️
Day 62: Pandas + APIs → Analyze Twitter trends 🐦
Day 63:Project:Real-time COVID-19 tracker
Optimization:
Day 64:dtype optimization → Reduce memory usage by 70%
Day 65:swifter → Speed up apply() functions ⚡
📅 Week 11-12: Machine Learning with Pandas
Goal: Prep data for ML models.
Day 66: Feature engineering → Predict exam scores 📝
Day 67: One-hot encoding → Classify spam emails 📧
Day 68:Project:House price predictor 🏠
Pandas Tricks:
Day 69:pd.cut() → Bin data into categories
Day 70:qcut() → Auto-binning by quantiles
📅 Week 13-14: Capstone Projects
Choose Your Track:
Business:Optimize supermarket sales 🛒
Social Media:Predict viral TikTok songs 🎶
Sports:NBA player performance dashboard 🏀
Final Deliverables:
Jupyter Notebook report
Interactive Plotly dashboard
GitHub repository
🎁 Pandas Cheat Sheet
# Top 10 Pandas Tricks
1.df.query('price > 100')# Fast filtering
2.df.value_counts(normalize=True)# Percentages
3.df.nlargest(5,'likes')# Top N rows
4.pd.read_clipboard()# Paste data from Excel
5.df.style.background_gradient()# Heatmap in Notebook
📂 Dataset Ideas
| Topic | Dataset Example | Pandas Skill Applied |
|—————-|———————————-|——————————-|
| Music | Spotify Top 100 | groupby(), datetime |
| Sports | FIFA 23 Player Stats | merge(), query() |
| Finance | Bitcoin Historical Prices | resample(), rolling() |
🛠️ Tools & Resources
For Slow Internet: Use PandasGUI (offline data exploration).
Debugging Helper: ChatGPT → “Explain this Pandas error: [paste error]”
Extensions:
Add a “Pandas Battle” day (Day 85) where students compete to clean a messy dataset fastest.
📈 Tesla Stock Analysis Project
Skills Applied: Python, Pandas, Visualization, Time Series, Financial Analysis
🎯 Learning Goals
✔ Analyze Tesla’s stock performance (2010-Present)
✔ Compare with competitors (Ford, GM, NIO)
✔ Predict trends using moving averages
✔ Build an interactive dashboard