Learn with Yasir

Share Your Feedback

How to Structure a Data Analysis Project in Python: A Complete Guide

How to Structure a Data Analysis Project in Python: A Complete Guide

Here’s your updated data analysis project structure, incorporating tests and reports with detailed suggestions.


πŸ“‚ Project Structure

my_data_analysis_project/
│── data/  
β”‚   β”œβ”€β”€ raw/            # Unprocessed source data  
β”‚   β”œβ”€β”€ interim/        # Temporary files during processing  
β”‚   β”œβ”€β”€ processed/      # Cleaned and transformed data  
β”‚   β”œβ”€β”€ final/          # Final, analysis-ready datasets  
β”‚  
│── notebooks/          # Jupyter notebooks for exploration  
β”‚  
│── src/               # Python scripts for data processing  
β”‚   β”œβ”€β”€ data_preprocessing.py    # Data cleaning functions  
β”‚   β”œβ”€β”€ eda.py                  # Exploratory Data Analysis  
β”‚   β”œβ”€β”€ feature_engineering.py   # Create new features  
β”‚   β”œβ”€β”€ model_training.py        # Train models  
β”‚   β”œβ”€β”€ visualization.py         # Generate plots  
β”‚  
│── reports/            # Reports and visualizations  
β”‚   β”œβ”€β”€ eda_report.html         # Auto-generated EDA report  
β”‚   β”œβ”€β”€ model_evaluation.pdf    # Model performance summary  
β”‚   β”œβ”€β”€ summary_findings.pdf    # Final analysis summary  
β”‚   β”œβ”€β”€ plots/                  # Folder for generated plots  
β”‚  
│── tests/              # Unit tests for data and models  
β”‚   β”œβ”€β”€ test_data_processing.py  # Test data cleaning  
β”‚   β”œβ”€β”€ test_feature_engineering.py # Test feature creation  
β”‚   β”œβ”€β”€ test_model_training.py   # Validate model performance  
β”‚  
│── docs/               # Project documentation  
│── .gitignore          # Ignore large files and virtual environments  
│── requirements.txt    # Python dependencies  
│── README.md           # Project overview and setup instructions  
│── config.yaml         # Configuration file for paths and parameters  

πŸ“ tests/ – Unit Tests for Reliability

Tests ensure the data processing, feature engineering, and models work correctly.

Suggested Tests

  1. Data Integrity Checks:
    • Ensure expected columns exist
    • Check for missing values and duplicates
    • Validate correct data types
  2. Data Processing Tests:
    • Ensure missing values are handled
    • Validate data transformations
  3. Feature Engineering Tests:
    • Confirm new feature calculations are correct
  4. Model Performance Checks:
    • Verify model accuracy is within expected range
    • Ensure predictions are valid (no NaNs)

Example Test File: tests/test_data_processing.py

import pandas as pd
import pytest
from src.data_preprocessing import clean_data  

def test_no_missing_values():
    df = pd.DataFrame({"A": [1, 2, None], "B": [4, 5, 6]})
    cleaned_df = clean_data(df)
    assert cleaned_df.isnull().sum().sum() == 0

Run tests with:

pytest tests/

πŸ“ reports/ – Final Reports and Insights

This folder stores EDA reports, model evaluations, and visualizations.

Suggested Reports

  1. Exploratory Data Analysis (EDA) Report
    • Summary of dataset, missing values, distributions
    • Auto-generated using pandas-profiling
      from pandas_profiling import ProfileReport
      report = ProfileReport(df)
      report.to_file("reports/eda_report.html")
      
  2. Model Performance Report
    • Accuracy, precision-recall, confusion matrix
    • Save as model_evaluation.pdf
  3. Final Summary Report
    • Key insights, trends, and business recommendations
    • Save as summary_findings.pdf
  4. Visualization Reports
    • Store graphs and charts as PNG/JPG
      import matplotlib.pyplot as plt  
      plt.savefig("reports/plots/histogram.png")
      

βœ… Best Practices

βœ” Modular Code: Keep reusable functions in src/
βœ” Version Control: Use Git for tracking changes
βœ” Automated Testing: Run tests with pytest
βœ” Clear Documentation: Write README and docstrings
βœ” Automate Reports: Use Python scripts for report generation

This structure makes your project organized, scalable, and production-ready. Let me know if you need help setting up a template!