Hereβs your updated data analysis project structure, incorporating tests and reports with detailed suggestions.
my_data_analysis_project/
βββ data/
β βββ raw/ # Unprocessed source data
β βββ interim/ # Temporary files during processing
β βββ processed/ # Cleaned and transformed data
β βββ final/ # Final, analysis-ready datasets
β
βββ notebooks/ # Jupyter notebooks for exploration
β
βββ src/ # Python scripts for data processing
β βββ data_preprocessing.py # Data cleaning functions
β βββ eda.py # Exploratory Data Analysis
β βββ feature_engineering.py # Create new features
β βββ model_training.py # Train models
β βββ visualization.py # Generate plots
β
βββ reports/ # Reports and visualizations
β βββ eda_report.html # Auto-generated EDA report
β βββ model_evaluation.pdf # Model performance summary
β βββ summary_findings.pdf # Final analysis summary
β βββ plots/ # Folder for generated plots
β
βββ tests/ # Unit tests for data and models
β βββ test_data_processing.py # Test data cleaning
β βββ test_feature_engineering.py # Test feature creation
β βββ test_model_training.py # Validate model performance
β
βββ docs/ # Project documentation
βββ .gitignore # Ignore large files and virtual environments
βββ requirements.txt # Python dependencies
βββ README.md # Project overview and setup instructions
βββ config.yaml # Configuration file for paths and parameters
Tests ensure the data processing, feature engineering, and models work correctly.
Example Test File: tests/test_data_processing.py
import pandas as pd
import pytest
from src.data_preprocessing import clean_data
def test_no_missing_values():
df = pd.DataFrame({"A": [1, 2, None], "B": [4, 5, 6]})
cleaned_df = clean_data(df)
assert cleaned_df.isnull().sum().sum() == 0
Run tests with:
pytest tests/
This folder stores EDA reports, model evaluations, and visualizations.
pandas-profiling
from pandas_profiling import ProfileReport
report = ProfileReport(df)
report.to_file("reports/eda_report.html")
model_evaluation.pdf
summary_findings.pdf
import matplotlib.pyplot as plt
plt.savefig("reports/plots/histogram.png")
β Modular Code: Keep reusable functions in src/
β Version Control: Use Git for tracking changes
β Automated Testing: Run tests with pytest
β Clear Documentation: Write README and docstrings
β Automate Reports: Use Python scripts for report generation
This structure makes your project organized, scalable, and production-ready. Let me know if you need help setting up a template!